
Photosketcher: interactive sketch-based image synthesis

Mathias Eitz1, Ronald Richter1, Kristian Hildebrand1, Tamy Boubekeur2 and Marc Alexa1
1TU Berlin 2 Telecom ParisTech/CNRS

Figure 1: Photosketcher: realistic images from user sketches using large image collection queries and interactive image compositing.

Abstract

We introduce Photosketcher, an interactive system for progressively
synthesizing novel images using only sparse user sketches as the
input. Compared to existing approaches for synthesising images
from parts of other images, Photosketcher works on the image con-
tent exclusively, no keywords or other metadata associated with the
images is required. Users sketch the rough shape of a desired im-
age part and we automatically search a large collection of images
for images containing that part. The search is based on a bag-of-
features approach using local descriptors for translation invariant
part retrieval. The compositing step again is based on user scrib-
bles: from the scribbles we predict the desired part using Gaussian
Mixture Models and compute an optimal seam using Graphcut. Op-
tionally, Photosketcher lets users blend the composite image in the
gradient domain to further reduce visible seams. We demonstrate
that the resulting system allows interactive generation of complex
images.

1 Introduction

Suppose you are thinking of an image depicting a real scene. How
would you create a digital representation of this image? If the scene
exists in reality it could be photographed, however, this is expensive
and time-consuming. With the advent of large open image collec-
tions it is possible that a similar photograph has already been taken
and made available. Yet, it is to be expected that any existing pho-
tograph is only an approximation of your imagination. It seems that
for a more complete rendition of the mental image it is necessary to
create it with the help of a computer, either by directly drawing it,
or by creating a 3D scene that can be rendered into an image. Both
solutions require talent, skill, and experience. We propose a sys-
tem that combines aspects of all of the solutions above: it is based
on photographs but lets the user interactively search and compose
them, allowing anyone to create complex pictures without any par-
ticular artistic skill.

Our approach, named Photosketcher, combines two main ideas:

1. Instead of searching for a single image that perfectly fits the
requirements, the image is interactively composed out of parts
of images. The idea is that it is more likely that each part of
the desired scene is part of a picture in the collection than
finding a single, perfectly matching image. This has been
shown to work well for filling holes in given images [Hays

and Efros 2007] or stitching together a single image from a
series of photographs with similar content [Agarwala et al.
2004].

2. All user interaction with Photosketcher is based on simple
sketches and scribbles: the image parts are queried based on a
sketching interface, requiring the user to only enter few rough
feature lines of the desired structures. The compositing inter-
face relies on sparse user scribbles that provide initial hints
about the part to be selected.

Overall, synthesizing novel imagery with our system only requires
two simple interaction steps: 1) sketching outlines that depict the
desired scene element; as a result Photosketcher presents a small set
of images that match the input and 2) selecting the best matching
result; Photosketcher adds this image to the current intermediate
result using foreground extraction and matting techniques. Users
repeat those two steps until the result eventually fits their intentions
and contains all desired scene elements (see Fig. 1). We give a
more detailed explanation of this pipeline in Sec. 3.

Note that the system described in this paper is an extended version
of the synthesis system proposed by Eitz et al. [2009]. While we
follow the overall original idea of synthesing images from sparse
sketches only, this papers differs in the following aspects: compared
to the original single page version, we now have sufficient space to
describe all pipeline step in full detail. We use Gaussian Mixture
Models (GMM) for learning an image model, use bag-of-features
sketch-based search rather than global descriptors and present and
additional user study evaluating the retrieval quality.

Challenge: sketch-based search The first major technical
challenge in the Photosketcher pipeline is the search for images
resembling the user sketch. While searching image collections –
given example photographs – is a common problem, we consider
queries using sketched feature lines as input as an even more diffi-
cult problem. Since the information contained in a sketch is sparser
than in a photograph, a larger variety of images can be matched and
the search will be less precise.

We now formulate several desired properties of a search engine us-
ing sketched feature lines as input: a) the search should – despite
the sparse input – be reasonably precise and the matches perceptu-
ally similar to the sketch. b) It should be invariant to the absolute
position of the sketch on the canvas; this is important as we expect

users to search for parts of images and the absolute position of the
desired part in a collection image is irrelevant. c) It should be tol-
erant against local as well as global deformations since we expect
users’ sketches not to exactly depict the outlines and proportions of
photographed objects. d) The search should be fast yielding inter-
active retrieval rates even on collections possibly containing mil-
lions of images. To achieve these goals, we propose to base the
search on a bag-of-features approach using local features encoded
as histograms of gradient orientation [Eitz et al. 2011]. This ap-
proach has been shown to outperform other current approaches and
due to its use of local features it is translation invariant as well as
tolerant against local and global deformations. Finally, using in-
verted indices for the search yields the desired fast retrieval rates
even on large collections. We describe this approach in more detail
in Sec. 4.

Challenge: composing images The second major challenge in
Photosketcher is to form a realistic image given the parts retrieved
by sketching. This is extremely difficult as humans are very sen-
sitive to several artifacts that arise from a naive composite: if the
parts differ in texture, color or illumination a visible seam around
the composition destroys the illusion of a realistic image. We ad-
dress this by trying to hide the seam in regions where it is difficult
to notice using Graphcut optimization. Retrieved parts might also
be perspectively distorted with respect to the currently assembled
image, such that the impression of a realistic image would be ru-
ined. We do not try to fix this algorithmically but rather rely on the
sheer amount of data available in today’s image collections: as the
number of images in the collection is further increased, the proba-
bility that it contains the desired part under the correct perspective
also increases. Rather than forcing users to accept an automatic
composite (which may or may not fit their intention), our key idea
is to start from an automatically generated composite and provide
scribble-based interfaces that allow interactively improving the au-
tomatically generated seam, if so desired. We describe the user
interface in more detail in Sec. 3.

The resulting system can be used by novice users to quickly gener-
ate compound images (see Sec. 6). The power of the system stems
from exploiting the vast amount of existing images, which offsets
obvious deficits in search and composition. We present more de-
tailed conclusions in Sec. 7.

2 Related work

The idea that all user input is based on sketching only is what
makes Photosketcher novel and different from similar approaches,
such as Sketch2Photo [Chen et al. 2009] which uses keywords and
sketches. To put our work into context, we discuss related work
in chronological order and highlight major similarities as well as
differences in each case.

Graphcut Textures [Kwatra et al. 2003] introduces the first approach
for synthesizing novel texture images by copying irregularly shaped
parts – optimized using Graphcut – from multiple source textures.
All of the following systems (including Photosketcher) make use of
a variant of this technique in order to avoid visible seams in the final
composite image/texture. Agarwala et al. [2004] introduce a frame-
work for ”interactive digital photomontage“ (IDP). Given a stack
of photographs and image objectives that encode the properties that
are desired in the final composite, IDP makes use of Graphcut opti-
mization to find a composite that best fullfills all objectives. While
the compositing stage in Photosketcher has been inspired by Graph-
cut Textures as well as IDP, the main difference lies in the type of
images used to form the composite: in IDP as well as Graphcut
Textures the source images are closely related and depict the same

scene or object but with slightly different properties such as depth-
of-field, face expression or illumination. In Photosketcher this is
very different: parts typically are selected from a large number of
unrelated images and this makes compositing them into a seamless
result image harder.

Rother et al. [2006] define an automatic algorithm for assembling
representative elements from a set of unrelated images into a con-
vincing collage (AutoCollage). Generating the collage is formu-
lated as a set of optimization problems, which include: automati-
cally selecting the regions of interest from the input images, tightly
packing the extracted regions into a collage such that important ar-
eas such as faces remain visible and finally making the seams be-
tween the collage elements visually undisturbing. AutoCollage is
similar to Photosketcher with regard to the composition step in that
unrelated image content is to be assembled into a final result image.
However, it differs by its final goal: while in AutoCollage the result
is a tightly packed collage of image elements our aim is to generate
a realistic image that in the optimal case would be undistinguish-
able from a real photograph. Johnson et al. [2006] present Seman-
tic Photo Synthesis, a system specifically designed for synthesizing
photographs – rather than collages – from parts of existing images.
Their main idea is to create an image that is semantically similar
to the desired one by placing text labels on a canvas. Those labels
indicate rough position and category of the desired part. Similarly
to all other systems, the final composite image is generated using
Graphcut optimization. Photo Clip Art [Lalonde et al. 2007] lets
users insert new objects – such as cars or humans – into existing
photographs. Differently from all other systems, the central idea of
Photo Clip Art is to avoid modifying the inserted object. Instead,
the idea is to let users only choose from objects that already have
the required properties (such as lighting, perspective and resolu-
tion). In case such objects exists, the resulting composite images
are extremly convincing. The main difference between Photo Clip
Art and Photosketcher therefore lies in the type of image data re-
quired: while Photo Clip Art relies on a medium-sized collection of
images that contains presegmented and annotated object instances,
Photosketcher relies on the variety that comes with a much larger
image collection (without any metadata).

Chen et al. [2009] propose Sketch2Photo which uses a text-labelled
sketch indicating the layout of a desired picture as the input. This
annotated sketch is used to initially perform a keyword search on
large online image collections (such as Google Images). For each
element, the resulting set of pictures is filtered to retain only those
images that are easy to automatically composite and paste them
at the location which is indicated by the text-labelled sketch. The
main difference to Photosketcher is that Sketch2Photo does not per-
form pure visual search: each object drawn by the user must be an-
notated with a keyword and a classical text-based search is then per-
formed. Second, the system is not interactive and may require hours
to synthesize novel images, while Photosketcher provides interac-
tive output, such that users can edit and modify the pictures in real
time. In case a computer generated rendition of the desired scene is
already given, Johnson et al. [2011] propose the CG2Real system
which replaces a CG image with parts of images from a large image
collection. The resulting composite image is structurally similar to
the original CG image but appears more realistic to the human ob-
server.

Overall, Semantic Photo Synthesis [Johnson et al. 2006], Photo
Clip Art [Lalonde et al. 2007] as well as Sketch2Photo [Chen et al.
2009] are the systems that are most closely related to Photosketcher.
While all systems share the same overall goal of synthesizing realis-
tic novel photographs, to the best of our knowledge Photosketcher
is the first one that interactively works on large, untagged image
collections.

Figure 2: Photosketcher workflow: the user starts by sketching a
part of the desired content, the system retrieves best matches from a
large collection of images and presents those to the user. The user
selects the best match and uses interactive compositing to create an
updated version of the desired image. This process is iterated until
the user is satisfied with the composite image.

3 Sketching

The aim of Photosketcher is to provide the user with an easy-to-
use interface for interactively composing an image from parts of
existing images. The fundamental principle is a loop, in which a
user queries a large collection of images for matches to an outline
sketch, chooses a query result, extracts a region from the chosen
image, and pastes it into the current intermediate result (see Fig. 2).

An important interface question is how to query the database. While
using text queries alone would be too imprecise, example-based
querying is also not an option as the required examples are typically
not at hand. Instead, we argue that sketching feature lines is both
a natural and simple way to quickly communicate the mental con-
cept of a shape. Additionally, using only information contained in
the images themselves rather than using additional metadata (e.g.
keywords) makes Photosketcher work on arbitrary image collec-
tions. Note that we only allow binary sketches, i.e. feature lines do
not carry color information. We have initially experimented with
colored strokes but users found this additional input dimension dif-
ficult to exploit.

In particular, users perform the following steps in one loop of the
Photosketcher image generation process:

sketch and retrieve: users sketch binary outlines to define the de-
sired shape of the content. We use this sketch to query a large
image collection. The result of the query for shapes is a small
set of pictures with similar structure from which users select
the desired one.

transform and select: once a query result is chosen, users roughly
draw a closed boundary around the desired part using a thick
pen. This defines an initial selection which the user then trans-
lates and scales until the part is in the right position.

extract and composite: from the rough selection in the previous
step we learn a model of desired and undesired image parts
and automatically compute an initial composition that takes
the learned model into account. Using a stroke based inter-
face, users can iteratively refine the composition by drawing
scribbles that indicate that some parts should be additionally

included/removed from the final composite image.

Once the part is merged into one image, the user continues with
sketching the next desired object or part. This loop repeats until the
user is satisfied with the result. We illustrate this workflow in Fig. 2.
We let users (optionally) select an initial background image using
an initial sketch and retrieve step before the actual compositing loop
begins.

We use a Cintix UX21 touch sensitive monitor as the input device
such that users are able to sketch their queries naturally as if using
pen and paper.

4 Searching

We propose using a bag-of-features (BoF) approach [Sivic and Zis-
serman 2003] for the sketch-based retrieval pipeline of Photos-
ketcher. BoF search is a popular technique for example-based im-
age retrieval and is – due to its use of small local features – in-
herently translation invariant. By quantizing the local features to a
small finite set of visual words, the search can be accelerated us-
ing an inverted index which is a well-proven technique from text
retrieval that is easily able to handle huge collections. In particu-
lar, we use the approach of Eitz et al. [2011] that generalizes BoF
search for sketch-based image retrieval and therefore fulfills our re-
quirements defined in Sec. 1. We now give a quick overview of the
components of a typical BoF image retrieval system:

• Sampling in image (scale) space. This defines local pixel co-
ordinates from which features are extracted. Often, an im-
portant algorithmic aspect is to make detection of those co-
ordinates repeatable: in a transformed version of the origi-
nal image (rigid or perspective transformation, different light-
ing etc.) the sampler should be able to primarily detect core-
sponding coordinates.

• Feature extraction and representation. Given a local coordi-
nate, a feature is extracted that represents the image content
within a small local window around that coordinate. The fea-
ture should be distinctive, i.e. perceptually different local re-
gions should result in clearly discernable features.

• Quantization of features. In order to speed up retrieval as well
as to achieve invariance to small local deformations, local fea-
tures are quantized, yielding – depending on the application –
a ”visual vocabulary“ containing between 1,000 und 250,000
visual words. Each image is then represented by a (sparse)
histogram of visual word occurances.

• Search using inverted indices. An inverted index is typically
constructed in an offline process and maps from a visual word
to the list of images in which that word appears. This can
significantly speed up the search process as only those images
need to be considered that have at least one visual word in
common with the query image.

In the following paragraphs, we quickly review the stages of the re-
trieval pipeline applied in Photosketcher (which is similar to the one
in Eitz et al. [2011]) and highlight where the sketch-based search
differs from a typical example-based retrieval system.

Edge extraction One important point is the pre-processing step
required to extract the edge and contour information from the pho-
tographs in the image collection. This is an offline process and done
only once for each image in the collection. Ideally, the resulting
edge images would be perceptually very close to user sketches and
retain only those edges that users are likely to sketch. This is a dif-
ficult problem and we resort to the standard approach of extracting

Canny edges from the images.

Sampling We perform random sampling in image space, using
500 random samples per sketch/edge image. Note that we do not
apply interest point detection as the sketches typically are very
sparse and only very few interest points could be detected. We also
do not apply any scale-space detection in sketch-space, although
this could be an interesting direction for future work. We discard
all sample points that would result in an empty feature beeing ex-
tracted.

Feature representation We use the best performing feature rep-
resentation from Eitz et al. [2011]: the SHoG descriptor essentially
is a histogram of oriented gradients representation of the local im-
age region. We use 4 × 4 spatial and 8 orientational bins. This
makes the descriptor very similar to the SIFT descriptor except
that no information about edge direction is stored (not available in
binary sketches, only orientations from 0 to π can be discerned).
Also, gradient magnitude is regarded as constant for edges/sketch
lines.

Learning a visual vocabulary Given the local features from all
collection images, we randomly sample 1 million local features and
use them for learning a visual vocabulary by performing standard k-
means clustering. This approach ensures that the visual vocabulary
is learned from a wide variery of images and thus general enough
to handle arbitrary user sketches. We use k = 1000 clusters.

Inverted index Given the visual vocabulary, we quantize each
local feature to its nearest visual word (as measured using the stan-
dard Euclidean distance metric). As is standard for BoF approaches
we build an inverted index that maps from visual word to the list of
images containing that word.

Query given user sketch While running the Photosketcher sys-
tem, the inverted index as well as the visual vocabulary are acces-
sible to the system. Given a user sketch, we perform the following
steps to retrieve similar images: a) sampling and extracting local
features; b) quantization of all features against the visual vocabu-
lary and c) lookup in the inverted index and ranking using tf-idf
weights [Sivic and Zisserman 2003; Eitz et al. 2011]. The most
expensive step is the quantization stage and we speed this up by
performing the quantization for all features in parallel.

5 Compositing

Assuming a reasonably matching image S for a user sketch has
been found, the last key step in Photosketcher is to progressively
assemble the object(s) underlying the sketch with the existing back-
ground imageB. The difficulty in the compositing step lies in find-
ing a tradeoff between two conflicting requirements:

1. Segmenting the semantically relevant content from the
queried image. It would be visually disturbing to cut away
parts of the object a user wants to paste into the final image.

2. Creating a composition that is perceptually plausible, i.e. that
introduces no visible artifacts along the seams.

In Photosketcher, semantically important regions are specified us-
ing scribbles: initially, users roughly trace the border of the desired
object with a thick pen. This partitionsS into 3 regions: a ”desired“
region ΩD that must definitely come fromS, an ”undesired“ region
ΩU that must not come from S as well as a ”boundary“ region ΩB

for which we are not sure yet whether the pixels in it rather belong

to ΩD or ΩU (see Fig. 3). Our job now is to search for a seam in
ΩB that results in an optimal composition result. Once an initial
composition is found (which is typically not yet perfect) users can
sketch additional small scribbles to progressively correct errors in
the initial result. We make two types of scribbles available for that
task: one constrains the pixels lying under it to be included in ΩD ,
the other constrains its underlying pixels to come from ΩU . This
procedure is similar to that used in several existing image segmen-
tion approaches but differs in that we also need to take the second
requirement into account when computing the segmentation of S.

Overall, our compositing algorithm consists of three steps: First,
given the user scribbles, we learn a Gaussian Mixture Model
(GMM) that we employ to predict if pixels in ΩB should rather
belong to ΩD or ΩU . Second, given the predicition from the GMM
we use Graphcut to find a binary segmentation of S that results
in an optimal composite image. And third, we optionally perform
a blending step that smoothes out potentially remaining disturbing
luminance differences along the seam between S and B. We now
describe those three components in detail.

Gaussian Mixture Model A GMM is a parametric representation
of an arbitrary dimensional probability density function (pdf) as a
linear combination of Gaussians. In Photosketcher, we learn two
GMMs that represent a model of the desired and undesired parts of
S. Intuitively, the idea is that we have two models of S: for each
pixel n ∈ S they give us the probability (actually the probability
density) that n should be in the composite image. Remember that
in Photosketcher the user scribbles define a trimap and partition
S into three disjunct regions: one that should definitely be in the
composite image, one that should definitely not be; and an unknown
region (see Fig. 3). The main idea is to learn models of the color
distribution in those regions given the trimap: we learn a model of
the desired region by sampling pixels from ΩD; similarly for the
undesired regions by sampling from ΩU . Finally, this allows us to
make a prediction about the pixels in the unknow region ΩU .

A probability density function modeled as a linear combination of
k Gaussians is defined as:

P (n|Θ) =

k∑
i=1

piN(n|µi,Σi), (1)

with
∑
pi = 1 and µ and Σ denoting the mean vector and covari-

ance matrix of a multivariate Gaussian defined as:

N(n|µ,Σ) =
1

(2π)
M
2 |Σ|

1
2

exp

[
−1

2
(n− µ)TΣ−1(n− µ)

]
.

The unknown parameters of a GMM (which we need to estimate)
are Θ = [(p1,µ1,Σ1), . . . , (pk,µk,Σk)]. In Photosketcher we
work on 3-dimensional pixel values in the L*a*b color space (i.e.
M = 3) such that Euclidean distance between L*a*b triplets cor-
responds closely to their perceptual distance. We randomly sample
m = 4000 samples from both ΩD and ΩU and use those sam-
ples to learn the parameters for two GMMs. We use k = 5 Gaus-
sian components for each model and perform standard expectation-
maximization [Bishop 2006] to estimate ΘD,U . We denote by
PD(n|ΘD) the learned model of the desired image part and by
PU (n|ΘU) the model of the undesired part.

Finally, we are now able to predict for any unknow pixel x ∈ SΩB

whether it rather belongs to ΩD or ΩU . This is done by simply
plugging x into Eqn. (1) given ΘD and ΘU , respectively. We vi-
sualize the result of such a prediction in Fig. 3.

In the remaining part of this paper we write PD(n) as a shorthand
for PD(n|ΘD).

Figure 3: The initial user-drawn boundary curve (blue) partitions S into three disjoint regions. We train two Gaussian Mixture Models using
samples from ΩU (crosses) and ΩD (circles). This allows to predict for any pixel whether it rather belongs to ΩD (middle) or ΩU (right).
Redder values encode higher probabilities.

GraphCut We treat finding those regions in S that yield a seman-
tically as well as visually plausible composition as a binary pixel
labeling problem. Each pixel n ∈ S is assigned a label lp ∈ {0, 1}
that describes whether n should be taken from the source image S
(lp = 0) or the background image B (lp = 1) in order to form
an optimal composite image. Our task is to find a labeling that is
a good compromise between both requirements. We find such a
labeling by minimizing the cost function

E(S,B) = Ed(S) + λEs(S,B). (2)

Ed(S) is a function of all pixels in image S and encodes our first
requirement of including all semantically relevant object parts. In-
tuitively, Ed(S) should return a small value if all important parts
are included in the compositon and a high value if semantically im-
portant parts are missing. Es(S,B) is a function of the pixels of
both S and B and encodes the second requirement, i.e. that seams
should run through regions where they produce the least amount
of artifacts in the final composite image. Again, this should return
high values for visible seams and low values otherwise.

More specifically, we define both terms as:

Ed(S) =
∑
n∈S

[(1− lp) lnPD(n) + lp lnPU (n)] (3)

where PD,U (n) is the probability (density) of pixel n belonging
to ΩD and ΩU , respectively (see Eqn. (1)). Since we later perform
an additional blending step in the gradient domain, we use the cost
function proposed for this problem by Hays and Efros [2007]. To
simplify our notation we first define a single-channel intermediate
image I that encodes the sum of squared differences betweenS and
B, i.e. the pixel-wise squared Euclidean distance between S and
B. Let {p, q} ∈ Np(I) denote the four pairs of pixels that form the
4-neighborhood of pixel p in I . Then we define our energy measure
as:

Es(S,B) = Ẽ(I) =
∑

{p,q}∈Np(I)

|lp − lq| ‖ p− q ‖22 . (4)

Note that in Eqn. (3) and Eqn. (4) the terms (1− lp), lp and |lp− lq|
are used as indicator functions: they can take values of either 0 or
1. Their job is to select one of both terms in Eqn. (3) depend-
ing on whether pixel p gets labeled as 0 or 1. Similarly, the inner
term of Eqn. (4) returns a value 6= 0 only if two neighboring pix-
els {p, q} are separated by the seam, i.e get assigned different la-
bels. To summarize: Eqn. (3) makes sure that the seam respects the
learned model for the desired and undesired region while Eqn. (4)
tries to force the seam through regions where the cut is visually
least disturbing.

We efficiently find the labeling that minimizes Eqn. (2) using
Graphcut [Boykov and Kolmogorov 2004]. More specifically, we
define a graph G = (V,E) where V is the set of m × n + 2 ver-
tices corresponding to the pixels in S plus two additional terminal
nodes, the source S and the sink T . We define the edges in G to
correspond to the 4-connectivity of the image, plus, for each node,
two edges to the terminal nodes S and T . Associated with each
edge is a weight computed from the term ‖ p− q ‖22 from Eqn. (4).
Associated with each edge to S and T is the weight lnPD(n) and
lnPU (n), respectively (see Eqn. (3)). To incorporate the user con-
straints coming from the scribbles, we replace the weights for edges
to S by ∞ if n is contained in ΩD and similarly for the edges to
T if n is contained in ΩU . To compute the minimum cut in G –
which in turn gives us a labeling that minimizes Eqn. (2), we use
the Graphcut implementation of Boykov et al. [2004]. To further
reduce visible seams that might result from pasting the resulting
region onto the canvas we perform an additional blending step.

Blending In Photosketcher, we provide the user with three op-
tions for blending the selected object into the existing image:

• Direct copy of the pixels labeled as foreground to the back-
groud. This most simple option is extremely fast and performs
astonishingly well in many cases, especially when the seam
can be hidden in highly textured regions of the background
image.

• Feathering, i.e. alpha blending of the pixels within a certain
small band of k pixels along the seam.

• Poisson blending [Pérez et al. 2003], i.e. compositing in the
gradient domain instead of directly in the spatial domain.
Working in the gradient domain retains the relative lumi-
nances of the pasted pixels but adapts the absolute luminance
to that of the background luminances along the seam. This
option can be helpful if the foreground and background are
similarly textured along the seam but are differenly illumi-
nated.

Following our previous notation and the notation in Pérez et
al. [2003] we denote by Ω the region in S that has been labeled
with 0s in the Graphcut step, i.e. Ω = ΩF . We denote by ∂Ω the
boundary of Ω. SΩ then defines the set of actual pixel values of
S lying in the region Ω. We now wish to find a set of unknown,
optimized pixel values S̃Ω that have similar gradients (in a least-
squares sense) as the pixels in SΩ but at the same time minimize
color offsets along ∂Ω, which would otherwise be visually disturb-
ing. This problem is commonly formulated as a quadratic optimiza-

Figure 4: Final compositing results created with the Photosketcher system. The user’s input sketches are shown in the top row, chosen search
results below and the final composite on the right. Bottom right: can you determine the number of components used? (solution: 4 – mountain,
water, pyramid and clouds). Note that users not always choose images that match the input sketches (e.g. bottom row: door and umbrella).

Figure 5: Comparison of blending options in Photosketcher: from
left to right: copy, feathering, gradient domain. Note that gradient
domain blending is able to hide the artifact between the two birds
but also drastically changes their overall color.

tion problem:

S̃Ω = arg min
S̃Ω

‖∇S̃Ω −∇SΩ‖22 with S̃∂Ω = B∂Ω, (5)

and its minimizer S̃Ω is known to be the solution to the Poisson
equation with Dirichlet boundary conditions [Pérez et al. 2003].
The resulting system matrix is symmetric and positive definite
which means we can solve for S̃Ω very efficiently by computing
a Cholesky decomposition of the system matrix and performing
backsubstitution. We reuse the decomposition for all color chan-
nels and only recompute the decomposition if Ω changes.

6 Results

We have implemented a prototype system and show results in Fig. 1
and Fig. 4. The user interface is exclusively operated by sketches
and scribbles for searching and compositing, respectively. The use
of simple outlines for querying the database as well as the use of
scribbles in the compositing step has been intuitive in our experi-
ments with the Photosketcher system. We now discuss results of all
parts of the Photosketcher pipeline.

Image collection and pre-processing We use a collection of
1.5 million images downloaded from Flickr. Each image has a res-
olution of 1024×768 pixels and is stored in JPEG format. The com-
plete collection takes approximately 400Gb of disk space. Comput-
ing descriptors, learning the visual vocabulary and computing the
inverting index takes approximately 24 hours on a single modern
8-core machine (all steps have been parallelized such that all cores
are fully utilized). We extract 500 random samples from each image
and use a visual vocabulary of 1000 visual words.

Evaluation of sketch-based retrieval We have performed an
objective evaluation of the underlying sketch-based retrieval sys-
tem described in Sec. 4. Using a set of 20 typical user sketches we
have automatically generated the top 36 matches for each sketch
(we also show 36 matches in our GUI). Showing a sketch along
with a corresponding retrieval result, we have asked seven users
(including two of the authors) to give binary relevance ratings, de-
termining whether a result is a good match or not. Our evaluation
shows that on average 29.1% of the images are considered good
matches. In Fig. 6 we show more detailed evaluation plots: there
seems to be a clear difference in what images users consider rele-
vant. While participant #1 has been very strict and considered only
9.2% relevant, participant #7 considered 52.9% of the images to be
relevant matches (the authors are #4 and #5). Also retrieval quality
clearly depends on the input sketches: while sketch #9 generated
57.9% relevant matches, sketch #10 only generated 4.4%. While
those numbers show that there is much room for improvement in
precision (as expected), they also tell us that among the results we
display in the GUI, several relevant results appear and users are typ-
ically able to spot and select those very quickly. Additionally, since

our system is interactive, users can simply modify their sketches
to retrieve new results in case none of the matches is satisfying –
an important option that is not reflected in our evaluation numbers.
Additionally, we show several sample retrieval results in Fig. 1 and
Fig. 4.

Interactivity Overall, our experiments with Photosketcher show
that one key aspect in its design is the interactivity of all pipeline
steps: a) resketching to find better matches; b) optimizing a cut
using scribbles and c) choosing among several alternative blending
methods to further hide visible seams. All those steps provide inter-
active response times: our sketch-based search has response times
of typically below 500ms; the iterative compositing between about
250ms and 1s (see Tab. 1 for more detailed response times). Note
that both the GMM training stage (learning ΘD,U from ΩD,U) as
well as the Graphcut step can be accelerated by reusing previous so-
lutions once an initial solution has been found. The idea is that an
additional user scribble typically encodes only local constraints and
therefore should evoke mostly local changes in the new solution. In
this case, we do not expect the model to change a lot and start the
GMM training stage from the previously learned ΘD,U . Typically,
only a few iterations are needed until the GMM converges to the
new solution.

Compositing All results in this paper have been generated using
the compositing interface proposed in Sec. 5. We train our GMMs
from L*a*b color triplets – we found this to work slightly better
than using rgb triplets, probably due to the perceptually more uni-
form colorspace. We also found that the GMMs (using only pixel
data for training) are often able to successfully make predictions
about large, smooth regions. However, the prediction often fails
at the borders of those regions. On close inspection, borders often
have a very different color distribution than their adjacent regions
(typically darker) and therefore a GMM is unable to predict those
borders correctly in case corresponding training data has not been
available. The compositing step suffers from imperfections in the
images returned from the search: when searching for an object with
a given shape, we do not consider the background around that ob-
ject. A matching background texture and color is crucial, though,
for achieving good results when employing Poisson blending. In a
similar vein, it would be useful to align and snap the selected image
objects to the current background.

7 Discussion and conclusion

Overall, the compositing step is an extremely difficult task due to
mostly very dissimilar images that users try to merge. Our com-
positing step relies heavily on the Gaussian Mixture Models: if
their prediction is ”incorrect“, this incorrect data is used as a prior
for the Graphcut stage and the resulting seam will not be optimal.
We usually use 5 components for the GMM, however an automatic
selection could be desirable: if the image contains large, smooth ar-
eas, less components would be appropriate while other image areas
containing detail and a wide variety of colors might require more
than 5 components in order to be accurately represented. Compared
to GrabCut [Rother et al. 2004] we find that learning full covari-
ance matrices is possible in an interactive setting using a reasonable
number of training samples (4000 in our case).

Note that our system (on purpose) does not automatically filter out
search results that are hard to composite (as e.g. Sketch2Photo
does [Chen et al. 2009]). Again we argue that interactivity is key:
since all pipeline steps are interactive our strategy is to give com-
plete control to our users and let them decide whether an auto-
matic segmentation is acceptable, further manual work is required

Table 1: Photosketcher pipeline stages timings (in ms).

stage: search mask gmm-train gmm-predict graphcut blend
time (ms): 300 < 1 80 (initial) 100 400 (inital) < 1 (copy)

10 (reused) 100 (reused) 10 (feathering)
500 (poisson)

2 4 6
0

10

20

30

40

50

60

participant

%
 re

le
va

nt

average relevance (per participant)

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

sketch

%
 re

le
va

nt

average relevance (per sketch)

Figure 6: Evaluation of sketch-based retrieval stage: we show the percentage of relevant results in the top 36 matches. Left: average
percentage by participant (on average, participant 1 considered less results relevant than e.g. participant 3). Right: average percentage per
sketch (our system returns fewer relevant results for sketch 10 than for e.g. sketch 11).

or rather another image needs be selected.

While we do not require any metadata coming along with the
images, constructing a search index (see Sec. 4) in an offline-
precomputation step along with nearest-neighbor search during re-
trieval can be considered a sort of automatic tagging. Ideally,
the descriptors describing our images in high-dimensional feature
space would form semantically closely related clusters – in its cur-
rent form, the retrieval stage frequently does not respect semantic
closeness (which can be observed in Fig. 4).

Failure cases We observed failure cases mostly in 3 situations:

• The image collection does not contain any object semantically
close to the searched one. We admit that it is difficult to de-
termine whether the desired image is not in the collection or
whether the sketch-based image retrieval step was the limit-
ing factor. Note however that geometric similarity is almost
always matched.

• Abstract sketches with a very specific semantic meaning at-
tached to them – such as stick figures for instance – do not re-
sult in meaningful query results. This is since Photosketcher
only measures the geometric similarity between a sketch and
a picture for providing it as a query result.

• Photosketcher relies on the compositing step to generate con-
vincing results. Often this is an extremely difficult task, e.g.
when background textures do not match or the lighting of the
part to be inserted is too different from that of the existing
image.

Future work A possible direction for future work in sketch-based
retrieval could be to consider perceptual gradient orientations, as
long structures in a given direction are perceived as more important,
even if unstructured gradients define another direction in the same
area (e.g. tree roots contours vs. grass direction). The Canny edge
detector has problems in such cases and we believe that generating
high quality line drawings from the image collection is essential for

successful sketch-based retrieval.

Extending sketch-based retrieval systems to handle abstract or sym-
bolic sketches and more semantic information, is definitely an in-
teresting and important direction for future work.

An interesting observation is the dependence of the system on the
collection content. Our collection contains very few objects in a
simple frontal view (i.e. the front side of the house, the side view of
a car). However, most users tend to sketch objects from these points
of view and will find that only few images match their sketch – sim-
ply because there are no objects in the collection with silhouettes as
sketched by the user. We believe that making a system return per-
spectively projected views from a simple frontal view would help
boosting sketch-based retrieval performance tremendously.

A final aspect for future work would be to consider the existing
image when searching for parts to be added – this could be real-
ized by additionally ranking the objects according to the estimated
composite quality. This is an approach also taken in Photo Clip
Art [Lalonde et al. 2007]. Note that this would be much harder in
Photosketcher since the image collection used is much larger and
there is no presegmentation of all images into objects from which
the desired properties could be precomputed.

Conclusion Photosketcher makes a first step towards the creation
of new image content from simple sketches of feature lines, exploit-
ing large online image collections without the need of additional
metadata besides the raw images. In case high-quality metadata is
available, this can be exploited and existing systems such as Photo
Clip Art and Sketch2Photo [Lalonde et al. 2007; Chen et al. 2009]
have shown extremely convincing results using this approach. The
results of the final composite images generated by Photosketcher
are very promising, despite the fact that two inherently difficult
tasks – finding images according to sketches and compositing unre-
lated images – are combined into a single system. We found that in-
teractivity is a critical component for usability of the system: users
explore the space of possible pictures progressively and typically
go through an intensive try-and-test session where all these steps

might be repeated several times. In such a context, we believe that
Photosketcher offers an advantage over offline systems such as e.g.
Sketch2Photo [Chen et al. 2009].

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN,
M. 2004. Interactive Digital Photomontage. ACM Transactions
on Graphics 23, 3, 294–302.

BISHOP, C. 2006. Pattern Recognition and Machine Learning.
Springer.

BOYKOV, Y., AND KOLMOGOROV, V. 2004. An Experimental
Comparison of Min-Cut/Max-Flow Algorithms for Energy Min-
imization in Vision. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26, 9, 1124–1137.

CHEN, T., CHENG, M.-M., TAN, P., SHAMIR, A., AND HU, S.-
M. 2009. Sketch2Photo: Internet Image Montage. ACM Trans-
actions on Graphics 28, 5, 124:1–124:10.

EITZ, M., HILDEBRAND, K., BOUBEKEUR, T., AND ALEXA, M.
2009. PhotoSketch: a sketch based image query and compositing
system. In ACM SIGGRAPH 2009 Talk Program.

EITZ, M., HILDEBRAND, K., BOUBEKEUR, T., AND ALEXA, M.
2011. Sketch-Based Image Retrieval: Benchmark and Bag-of-
Features Descriptors. IEEE Transactions on Visualization and
Graphics, PrePrint.

HAYS, J., AND EFROS, A. A. 2007. Scene completion using
millions of photographs. ACM Transactions on Graphics 26, 3,
4:1–4:7.

JOHNSON, M., BROSTOW, G., SHOTTON, J., ARANDJELOVIC,
O., KWATRA, V., AND CIPOLLA, R. 2006. Semantic Photo
Synthesis. Computer Graphics Forum 25, 3, 407–413.

JOHNSON, M., DALE, K., AVIDAN, S., PFISTER, H., FREEMAN,
W. T., AND MATUSIK, W. 2011. CG2Real: Improving the Real-
ism of Computer Generated Images using a Large Collection of
Photographs. IEEE Transactions on Visualization and Computer
Graphics 17, 9, 1273–1285.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut Textures: Image and Video Synthesis Using
Graph Cuts. ACM Transactions on Graphics 22, 3, 277–286.

LALONDE, J.-F., HOIEM, D., EFROS, A. A., ROTHER, C.,
WINN, J., AND CRIMINISI, A. 2007. Photo Clip Art. ACM
Transactions on Graphics 26, 3, 3:1–3:10.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson Image
Editing. ACM Transactions on Graphics 22, 3, 313–318.

ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004. ”Grab-
Cut“ – Interactive Foreground Extraction using Iterated Graph
Cuts. ACM Transactions on Graphics 23, 3, 309–314.

ROTHER, C., BORDEAUX, L., HAMADI, Y., AND BLAKE, A.
2006. Autocollage. ACM Transactions on Graphics 25, 3, 847–
852.

SIVIC, J., AND ZISSERMAN, A. 2003. Video Google: A Text
Retrieval Approach to Object Matching in Videos. In IEEE In-
ternational Conference on Computer Vision, 1470–1477.

